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Abstract

In this paper, we propose LoRaSeek, a lightweight and reli-
able LoRa denoising framework that enhances signal qual-
ity and robustness for neural-enhanced LoRa decoding. Lo-
RaSeek integrates a hybrid architecture combining Convolu-
tional Neural Networks (CNNs), Transformers, and a hierar-
chical U-Net to effectively capture multi-scale, multidimen-
sional features of LoRa chirp signals. To maintain efficiency,
we integrate a lightweight Transformer block that supports
various LoRa configurations while keeping computational
overhead low. Additionally, we incorporate dual attention-
based skip connections to preserve chirp signal properties
across different scales. Experiments across diverse LoRa con-
figurations show that LoRaSeek achieves 2.04-3.86 dB signal-
to-noise ratio (SNR) gains over standard decoding methods
and up to 3.03 dB improvement over state-of-the-art neural-
enhanced LoRa decoding methods while reducing model
storage by up to 7.4x and inference time by up to 1.6x.

CCS Concepts

« Networks — Network protocols; Network algorithms;
« Computing methodologies — Hierarchical represen-
tations.

Keywords
LoRa, AIoT, Deep Learning for Wireless System

ACM Reference Format:

Khang Nguyen', Yidong Ren’, Jialuo Du’, Jingkai Lin', Maolin Gan',
Shigang Chen?, Mi Zhang®, Chunyi Peng*, Zhichao Cao!. 2025.
LoRaSeek: Boosting Denoising Ability in Neural-enhanced LoRa
Decoder via Hierarchical Feature Extraction. In The 31st Annual
International Conference on Mobile Computing and Networking (ACM

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ACM MOBICOM °25, Hong Kong, China

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1129-9/2025/11
https://doi.org/10.1145/3680207.3765241

“University of Florida

3The Ohio State University — *Purdue University

MOBICOM °25), November 4-8, 2025, Hong Kong, China. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3680207.3765241

1 Introduction

Low-Power Wide-Area Networks (LPWANSs) introduce a
new paradigm for the Internet of Things (IoT), enabling long-
distance, low-power wireless communication. Among LP-
WAN technologies, LoRa is widely adopted, operating in
unlicensed frequency bands to support applications in smart
cities [40], precision agriculture [7, 37, 39, 41, 50]. As of May
2024, Semtech [46], a leading LoRa chip manufacturer, re-
ports that LoRa accounts for over 30% of global LPWAN
connections, with 6.9 million gateways and more than 350
million end nodes.

In a LoRa network, end nodes transmit data directly to
any gateway within range, which then forwards the data to
the cloud via backhaul links. Under line-of-sight conditions,
LoRa end nodes can communicate with gateways over tens of
miles. However, real-world obstacles such as buildings, trees,
and hills introduce significant signal attenuation, compro-
mising transmission reliability [7, 40, 41]. Addressing weak
LoRa signals is therefore critical to sustaining its long-range,
low-power communication capabilities [24].

The core principle of LoRa decoding is to coherently ac-
cumulate signal energy into a single peak in the frequency
domain, surpassing random noise. To improve weak signal
decoding, various studies exploit redundancy in symbols [58],
packets [55], antennas [18], or gateways [10] to accumulate
more signal energy. For instance, XCopy [55] coherently
combines multiple retransmitted packet copies to strengthen
the energy peak of each symbol. However, these approaches
come at the cost of either reduced data rates or increased
infrastructure complexity.

In contrast, NELoRa [12, 24] introduces neural-enhanced
LoRa decoding, reducing the signal-to-noise ratio (SNR) re-
quired for symbol decoding without relying on redundancy.
Its key insight is that while the overall accumulated signal en-
ergy peak may be buried in noise, short time windows within
the signal can still exhibit peaks that surpass temporally ran-
dom noise. However, there is no free lunch: NELoRa’s model
size and inference time present major deployment challenges
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on edge gateways for real-time decoding. For instance, decod-
ing a single LoRa symbol takes up to 8.16 seconds on a Rasp-
berry Pi. GLoRiPHY [45] attempts to mitigate these issues
by employing an encoder-decoder model to reduce model
size and inference time. However, its maximum SNR gain
remains comparable to NELoRa’s (e.g., 0.52 dB difference),
suggesting that the encoder-decoder structure does not re-
tain more information than NELoRa’s Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM).
This raises a crucial question: What is the optimal neural net-
work architecture to effectively capture the temporal-spatial
signal peak patterns while minimizing storage and inference
overhead?

In this paper, we propose LoRaSeek, a hierarchical neu-
ral network architecture that advances LoRa weak signal
decoding beyond NELoRa while optimizing model size and
inference time. LoRaSeek leverages a hierarchical structure
to efficiently denoise weak LoRa signals, capturing both fine-
grained local details and global contextual features from
noisy inputs. However, ensuring optimal performance across
diverse LoRa configurations presents three key challenges.
Challenge #1: The frequency of a LoRa chirp symbol in-
creases linearly within a channel. Data modulation is achieved
by shifting the chirp’s initial frequency. LoRa employs spread-
ing factors (SF) to balance data rate and communication reli-
ability, adjusting the on-air time of a chirp symbol, which
ranges from 1.025 ms to 32.8 ms in a typical 125 kHz channel.
Due to the relatively long on-air time and noise variations
across temporal scales, developing an effective denoising
model is challenging. A hierarchical architecture capable
of capturing multi-scale spectral and temporal features is
essential for robust noise reduction.

Challenge #2: Each LoRa chirp symbol is unique, with crit-
ical data encoded through subtle variations such as small
frequency shifts or cyclic offsets. For instance, when the
spreading factor (SF) is set to 12, there are 4096 possible sym-
bols to classify. While aggressive noise removal improves
clarity, it risks erasing essential features or distorting the
spectral structure. Conversely, conservative approaches pre-
serve signal details but leave residual noise. Achieving ef-
fective noise suppression while maintaining these key chirp
characteristics for accurate decoding is a significant chal-
lenge. Furthermore, at ultra-low SNR levels, distinguishing
between noise and signal features in the LoRa domain be-
comes increasingly difficult.

Challenge #3: In the current LoRa network architecture,
LoRa packets are demodulated at LoRa gateways before the
decoded data is forwarded to cloud servers. While shifting the
decoding process to the cloud [48] is possible, the high cost
of establishing high-speed backhaul connections in rural ar-
eas makes it more practical to implement a neural-enhanced
LoRa decoder at the edge LoRa gateways. However, unlike
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GPU-powered cloud servers, LoRa gateways are resource-
constrained with limited computational power. This makes
it highly challenging to develop a model that is both com-
putationally efficient and reliable. The challenge is further
compounded by the increasing signal length for higher SFs,
requiring a solution that balances accuracy, efficiency, and
low latency without relying on overly complex architectures
unless optimized for deployment.

Solution #1: To address the first challenge, we propose a
UNet-based denoising architecture inspired by the U-shaped
design, integrating local and global feature extraction for
multi-scale learning. Long LoRa chirp signals exhibit both lo-
calized noise perturbations and broader spectral distortions,
making it crucial to leverage both local and global contexts
for effective recognition. Our UNet incorporates CNNs and
Transformers to enhance denoising performance: the CNN
efficiently captures short-term fluctuations, while the Trans-
former models global patterns such as chirp linearity and
cyclic offsets. These components are strategically placed at
multiple stages of the encoder and decoder to ensure robust
feature extraction and denoising across scales.

Solution #2: For the second challenge, we propose a selec-
tive denoising approach that focuses on informative features
within specific short time windows rather than processing
the entire chirp signal. This prevents over-denoising and
ensures reliable decoding. To achieve this, we introduce a
dual-attention skip connection mechanism that selectively
filters and fuses relevant features for reconstruction. Our
dual-attention mechanism consists of two key components:
(1) Channel Attention, which emphasizes the most relevant
signal chirps while suppressing noise-dominated channels.
(2) Spatial Attention, which captures the temporal energy
distribution to enhance feature representation. Integrating
attention, our model effectively balances noise reduction and
signal preservation, improving decoding robustness.
Solution #3: To address the third challenge, we take a two-
step approach to optimize the computational efficiency of our
UNet-based denoising architecture. 1) Progressive Downsam-
pling and Upsampling: Leveraging the U-shaped hierarchical
structure, we progressively reduce high-dimensional data
to lower dimensions while simultaneously increasing the
number of feature channels the network learns. This ensures
efficient representation learning while preserving critical
information. 2) Efficient Transformer Design: To mitigate
the quadratic complexity of traditional Transformer archi-
tectures, we integrate an efficient Transformer block with
linear complexity. Additionally, we enhance the Transformer
with a local context module, which captures fine-grained
dependencies while maintaining efficiency. This approach
significantly reduces computational overhead without com-
promising performance, making the model well-suited for
resource-constrained LoRa gateways.
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Figure 1: LoRa CSS modulation and demodulation.

We implement LoRaSeek with commercial-off-the-shelf
(COTS) LoRa radio and USRP N210 [44] as the LoRa gate-
way and evaluate it over emulated datasets and real-world
deployments. Experiments show that LoRaSeek improves
SNR gain and inference time simultaneously compared to
NELoRa [24] and GLoRiPHY [45].

We summarize our main contributions as follows:

« We propose a novel hierarchical feature extraction
approach to improve weak signal denoising in neural-
enhanced LoRa decoders, enhancing both decoding re-
liability and computational efficiency, making it light-
weight enough to run on edge nodes.

« We propose LoRaSeek, a UNet-based hierarchical de-
noising model designed to capture both local and global
features in the temporal-spatial domain. To further
enhance decoding robustness and computational effi-
ciency, we incorporate an adaptive attention mecha-
nism and optimize the model modules.

We implement LoRaSeek and evaluate its performance

in various environments. The results show up to 3.03 dB

improvement over state-of-the-art neural-enhanced

LoRa decoding methods. Meanwhile, the storage is re-

duced up to 7.4x and inference time is reduced up to

1.6x%.

2 Background and Motivation
2.1 Standard LoRa Physical Layer

In practical wireless communication, the received signal is
inevitably contaminated by additive noise. Let n(t) repre-
sent this noise, often modeled as a zero-mean Gaussian ran-
dom process with variance 0. The actual received signal is
y(@) = y.(t) + n(¢). Even under ultra-low SNR conditions,
LoRa can reliably recover data through its Chirp Spread
Spectrum (CSS) modulation. In this scheme, a base up-chirp
is defined over a symbol duration T with a frequency that
linearly sweeps from —%V to %V , where BW denotes the
channel bandwidth. As shown in Figure 1, the modulated
chirp signal is given by y,(t) = C(t) - exp{j2x fit}. At the
receiver, demodulation is performed via a process called
“dechirp”. The receiver multiplies the received signal by a
locally generated down-chirp, the complex conjugate of the
base chirp. The dechirped signal becomes

2(t) = y(t) - C*(t) = exp{j2z fit} + n(t) - C*(2),
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igure 2: Architectures of existing neural-enhanced
LoRa decoders. (a) NELoRa. (b) GLoRiPHY-Core.

where the first term is the desired signal and the second term
represents the noise after dechirp. To extract the transmitted
symbol, the receiver applies a Fast Fourier Transform (FFT)
over the symbol duration T:

T
Zln] = J 2(t) exp {— j@t} dt.
0 T
In the frequency domain, the energy of the dechirped yellow
signal is concentrated in the frequency bin corresponding to
the offset f;. The transmitted symbol is then identified by find-
ing the bin with the maximum energy: j‘s = arg max,{|Z[n]|}.
However, if the noise level is excessively high, the signal’s
energy peak can be overwhelmed by noise. Suppose the am-
plitude of the noise term n(t) - C*(¢) in a given FFT bin is on
the order of ov/T (with o2 being the noise variance). When
the condition T < ovTis met, or equivalently when the SNR
is too low, the dechirp and subsequent FFT fail to yield a
discernible peak, leading to erroneous decoding.

2.2 Neural-enhanced LoRa Decoding

Recent works [12, 13, 24, 45] enhance LoRa decoding by
primarily using deep neural networks (DNN) to mitigate
noise and interference. The chirp decoding problem is con-
verted to an initial frequency classification task given the
SF configuration. The rationale behind neural-enhanced de-
coding is to replace the single-dimensional feature space of
the frequency-domain energy-based dechirp decoding by a
multi-dimension, multi-resolution feature space. Firstly, a
neural-enhanced decoder takes the multi-dimensional spec-
trograms of both amplitude and phase, reflecting the informa-
tion from energy and channel as inputs. The complementary
information provides more distinguishable patterns among
different chirp symbols [24]. Moreover, by generating the
spectrograms with the Short-Time Fourier Transform (STFT),
it adds a temporal dimension by splitting a chirp symbol into
a series of shorter chirp slices so that even if the aggregate
noise over the whole symbol is overwhelming, some chirp
slices may survive due to temporarily weak noises. They may
exhibit sufficient features for decoding. The neural-enhanced
decoder can decode ultra-low SNR chirp symbols by extract-
ing the spatial and temporal features. Given LoRa chirps’
large scale and long range, neural networks are more effec-
tive than white-box signal processing for chirp slicing.
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Figure 3: Overview of LoRaSeek Architecture. LoRaSeek adopts a U-shaped hierarchical denoising structure that
extracts essential chirp signal patterns and reduces noise at multiple scales. (a) Convolution Block. (b) Transformer

Block. (c) Dual Attention-based Skip Connection module.

NELoRa [12, 24], in Figure 2(a), stacks different CNN and
LSTM blocks to capture intricate signal characteristics, signif-
icantly improving accuracy over traditional methods. How-
ever, the flat architecture causes exponential growth in com-
putation at higher SF, restricting deployment in resource-
constrained IoT devices. Additionally, CNNs and LSTMs
struggle with modeling long-range temporal dependencies,
capping achievable decoding performance. GLoRiPHY [45]
addresses some limitations of NELoRa by utilizing a CNN
encoder-decoder with a Transformer bottleneck. By effec-
tively leveraging the LoRa frame preamble, GLoRiPHY re-
duces computational overhead and improves robustness at
lower spreading factors. However, in Figure 2(b), GLoRiPHY-
Core only encodes shallow representations of the LoRa chirp
signal, causing the Transformer bottleneck to fail to model
extremely long-range dependencies at higher SFs (SF > 10)
while incurring high computational costs and limiting per-
formance. We empirically evaluated NELoRa and GLoRiPHY-
Core on SNR gains over dechirp and inference time per LoRa
packet. Using high-SNR data at SF 7 and 10 with generated
Gaussian noise, our results on a GPU server (Section 5.1)
show NELoRa’s SNR gain drops from 2.03 to 1.31 dB with in-
ference time increases from 7.1 to 34.6 ms. GLoRiPHY shows
a dramatic decline from 2.71 to 0.5 dB, increasing inference
time from 6.7 to 9.1 ms.

2.3 Motivation

The limitations of existing neural-enhanced decoders moti-
vate us to design novel architectures to effectively capture
spatial chirp-slice features and model long-range temporal
dependencies without exponential computational growth
under different LoRa configurations. Instead of the shallow
structure in NELoRa and GLoRiPHY, our core ideas come
from a hierarchical DNN architecture with hybrid attentive

CNNs and Transformers, boosting the denoising ability sig-
nificantly while achieving high computation efficiency.

3 LoRaSeek Design
3.1 Overall Architecture

As illustrated in Figure 3, LoRaSeek follows a hierarchical U-
shaped structure. We progressively denoise the chirp signal
across multiple scales, transitioning from high to low resolu-
tions during encoding, and reconstruct it via the correspond-
ing upsampling in the decoding phase. From the noisy time-
domain chirp signal, we convert it to a dual-spectrogram
representation by the Signal Transformation (Section 3.2.1)
module. The encoder then gradually downsamples the spec-
trogram through different stages by a sequence of Local and
Global Feature Extraction (Section 3.2.2) modules to gener-
ate multi-scale feature maps. At each stage’s transition, the
feature map undergoes an aggressive downsampling, where
either frequency or time dimension is reduced by half. In par-
allel, the decoder path mirrors the encoder’s structure in re-
verse, upsampling the feature map to the original resolution.
Local blocks capture short-term distortions, while global
blocks capture long-range dependencies and noise through
LoRa’s inherently long chirp. To ensure a high-quality de-
noising process, LoRaSeek integrates Dual Attention-based
Skip Connections (Section 3.4), which selectively filter and
maintain core low-level features from the encoder at var-
ious resolutions, effectively fusing them with the decoder
stage to enhance signal reconstruction. These blocks pre-
serve chirp information at multiple scales and both local
and global regions for effective denoising. Finally, the mod-
ule Signal Reconstruction (Section 3.5) converts the denoised
spectrogram into the representation of the signal in the time
domain by the inverse short-time Fourier transform (iSTFT).
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Figure 4: Visualizations of intermediate results across different feature extraction blocks at -20 dB SNR. (a)
Input spectrogram; (b) Outputs of Encoder Local Feature Extraction modules; (c) Outputs of three Global Feature
Extraction modules; (d) Outputs of Decoder Local Feature Extraction modules; (¢) Reconstructed spectrogram.

As a result, we perform the standard LoRa demodulation to
decode the transmitted information.

3.2 Local and Global Feature Extraction

3.2.1 Signal Transformation. To create a suitable input rep-
resentation for LoRaSeek, we first create a dual-channel
spectrogram input from the time-domain LoRa chirp x(n).
The process begins with computing STFT on x(n) and con-
catenating the real and imaginary parts of the STFT result

S(m,k) = Y x(mW[n — mH e 27kn/N

= [lge{S(m, )}, Im{S(m, k)}]

W is the Hann window with size m, x(n) € C" is transformed
and reshaped into 3D feature input tensor X € REW>2,
where H and W are sampling points and frequency bins.

3.22 Local and Global Feature Extraction. Under ultra-low
SNR conditions, LoRa chirp symbol is contaminated with
noise spanning both time and frequency domains. For effec-
tive signal denoising, we argue that both local and global
features are essential. Local features encode fine-grained in-
formation such as instantaneous change across time and fre-
quency domains, maintaining chirp integrity and removing
short-term, high-frequency distortions. Global features learn
long-range sweep structures of the extended chirp duration
and identify large-scale background noise over the signal.
Therefore, an effective LoRa chirp denoising design must bal-
ance local and global feature learning for reliable decoding ac-
curacy. Recent studies have shown that CNNs [23, 30, 32, 36]
excel at local feature extraction by applying a sliding window
to the input. On the other hand, Transformers [27, 31, 52, 61]
are effective in modeling long-distance relationships using
the self-attention mechanism. By combining the strengths
of both architectures, we propose a denoising hierarchical
structure where local and global feature extraction modules
are harmoniously integrated throughout the network.

Overall Pipeline: LoRaSeek feeds the dual-channel input
spectrogram X € REXW>2 through a series of local and global
feature extraction modules. At each local-local or local-global

stage transition, the feature input is continuously downsam-
pled by halving either the time or frequency dimensions,
facilitating a multi-scale representation. The shallow feature
F, € RIWXC where Cis often 16 or 32, from early local

extraction is transformed into deeper levels with dimensions

g X %V x 4C. The deepest feature map F; € RE W ™>C g

obtained in the bottleneck, with further halving of all spatial
dimensions and an increase in C (e.g., from 4C to 8C). The spe-
cific downsampling strategy relies on different SF configura-
tions, maintaining adaptive extraction modules for different
LoRa settings. The decoder, following the reverse structure,
takes the low-resolution latent feature F; to aggressively
recover the denoised output X with original resolution.
Local Feature Extraction: We stack multiple Convolution
blocks to expand the receptive field while preserving mean-
ingful temporal and spectral patterns. The locality nature of
the convolution block also prevents the network from losing
small key features. As shown in Figure 3, each Convolution
block consists of a standard convolution layer, followed by
batch normalization and ReLU activation.

Global Feature Extraction: In Figure 3, our global feature
extraction module includes an early Convolution block fol-
lowed by a sequence of Transformer blocks. The Convolution
block downsamples the feature map in the spatial dimen-
sion while increasing the channel dimension, reducing re-
dundancy, and enhancing feature representation. The Trans-
former block takes an enriched feature map and models the
long-range global dependencies across time and frequency
domains. This process allows LoRaSeek to distinguish the
core chirp patterns from the critical noise that spans the
entire symbol.

We evaluate the contribution of each feature extraction
block to the denoising process in Figure 4. In Figure 4(b),
the encoder’s Local Feature Extraction modules effectively
utilize the spatial information for noise suppression. Due to
CNN’s localized nature, the distinct energy peak and chirp
pattern are distorted. In Figure 4(c), the overall chirp struc-
ture and global energy pattern start aggregating across the
time dimension after three Global Feature Extraction layers.
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With further noise reduction in the decoder and the informa-
tion fusion from the skip connection, Figure 4(d) illustrates
the clear peak distribution of the core energy of a distinct
chirp symbol, accurately preserving the key signal. Finally,
as shown in Figure 4(e), we derive the denoised spectrogram
with distinct characteristics of the chirp signal.

3.3 Transformer Block

Although the Transformer architecture can model global de-
pendencies of the chirp symbol, it suffers from a major com-
putational limitation: in Transformer’s standard Multi-Head
Self Attention (MHSA) mechanism [52], the computational
complexity grows quadratically with the input resolution,
ie., O(W?H?) for an input of size H x W. This quadratic scal-
ing incurs excessive time and memory consumption when
processing LoRa chirp symbols in large SF (e.g., 12). To ad-
dress this challenge, we employ two core components in
the LoRaSeek Transformer block: Multi-Dconv Head Trans-
posed Attention and Locality-Aware Feed Forward Network.
Before each component, Layer Normalization is applied to
preprocess the input, and the output is concatenated with a
skip connection after each component.

Multi-Dconv Head Transposed Attention: We adopt the
Multi-Dconv Head Transposed Attention (MDTA) mecha-
nism [61] to replace MHSA. As shown in Figure 5(a), MDTA
applies self-attention (SA) across channels instead of spatial
dimensions, further reducing the computational complex-
ity to linear scaling, i.e., O(CC) for input size H x W x C.
Moreover, this design incorporates more locality into the
transformer, improving the denoising context information.

Locality-Aware Feed Forward Network: As Section 3.2.2
shows, both local and global information are necessary for
chirp signal denoising. Therefore, we further inject more
locality to LoRaSeek Transformer block in the feed-forward
network component. Several studies [27, 53, 60, 61] have
demonstrated superior performance gain of the Transformer
architecture when locality is introduced into the feed-forward
network. In Figure 5(b), we use 1 x 1 convolutions followed
by a 3 x 3 depth-wise convolution to capture local spatial in-
formation for each channel. We use another 1x1 convolution
to project the feature back to the original dimension.

3.4 Dual Attention-based Skip Connection

Skip connections have been widely used to reduce informa-
tion loss and performance degradation as the neural network
depth increases [6, 15, 22]. Under ultra-low SNR, LoRa chirp
noise spreads across time and frequency. Directly concatenat-
ing skip connections with the decoder path can amplify the
noise energy and limit decoding accuracy. Compared with
the encoder path, deeper layers in the decoder extract com-
plex signal representations through hierarchical CNN and
Transformer blocks. This semantic difference can impede the
neural network’s ability to maximize denoising performance.
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Figure 5: Core Components of the Transformer
Block. (a) Multi-Dconv Head Transposed Attention. (b)
Locality-Aware Feed Forward Network.

To address these technical challenges, we incorporate a
Dual Attention-based Skip Connection. As illustrated in Fig-
ure 3(c), our skip connection contains a channel attention
block followed by a spatial attention block, utilizing multi-
scale concatenations in LoRaSeek’s U-shaped architecture.
Given the encoder feature map F; € RFPWC at stage [, our
intuition is to determine which features to retain and forget
across channel and spatial domains for the denoised output.
Channel Attention Block: Our channel attention block
is a Squeeze-and-Excitation (SE) block [19]. The goal is to
highlight the important feature channels and suppress the
less important channels in the denoising procedures. As
shown in Figure 3(c), we apply Global Average Pooling (GAP)
to the feature map F; to generate a channel descriptor z, €
R, followed by two fully connected (FC) layers with weights
W, € REG/*C and w, € ROC/7), ReLU and sigmoid
activations are then used to compute attention map A, €
R>™C, The output feature map F ] € REWCi s computed
as:

Fl’(l’ Js C) = Ac(c) : Fl(i’ 7, C),
where i, j are the spatial positions, c is the channel index,
and A, = c(W, - ReLU(W; - z,)).

Spatial Attention Block: After the channel attention block,
spatial attention is used to prioritize the relevant spatial infor-
mation, such as concentrated chirp signal energy, and reduce
intensely noisy regions. Utilizing Spatial Attention mecha-
nism in Convolutional Block Attention Module (CBAM) [54],

in Figure 3(c), we apply average pooling and max pooling for
€ ]RHle,xl

Ve €{l,2, ...,Cl}

F] to compute spatial descriptors F/ ., Fl,,avg
concatenated and convolved them with a 7 x 7 convolution
layer followed by a sigmoid activation to generate a spa-
tial attention map A, € RIPW*1 The output feature map
F/'(i,j,c) is computed as:

F/(i,j,¢) = Ai, ) - FjG,j,c),  Vee{l,2,..,C}
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where i, j are the spatial positions, c is channel index, and
A = O'(COI’IV7><7 (Concat (Fl,,max’ Fll,avg)))'

3.5 Signal Reconstruction

To ensure compatibility with existing LoRa systems, we uti-
lize standard LoRa decoding techniques. Therefore, we apply
iSTFT to reconstruct the time-domain signal, preserving
amplitude and phase for precise decoding. We convert the
denoised spectrogram X into complex-valued spectrogram
as:

S(m, k) = Xpeat(m. k) + jXimag(m. k),

where m is the frame index, k is the frequency bin, and XReaI
and Xp, are the real and imaginary parts.

We then reconstruct the time-domain signal by applying
iSTFT, which is defined as:

) =Y > Sm, k)e™*/ Nw[n — mH]
m k

where W[n], N, and H are the window function, FFT size,
and hop size used in STFT to maintain consistency.

3.6 Weak Signal Packet Detection

We also need to improve the packet detection procedures for
extremely low SNR. Traditional detection [24] performs FFT
over the preambles and adds their power together to generate
a power peak, which often fails in low-SNR scenarios.

Firstly, we observe the Sampling Frequency Offsets (SFO),
making the length of a symbol different from its theoretical
value. The small frequency shifts caused by SFO will slightly
misalign the power peaks of each preamble chirp, and by
taking into account the SFO, we can align them and generate
a higher power peak. To do this, we multiply a singletone
with the designated frequency to shift the frequency of the
symbol. The initial phases of the preamble symbols follow a
quadratic pattern [24]. After accounting for the frequency
shifts, the phases will follow a linear pattern, and we can
search for the gradient that maximizes the added power. Thus,
we can mitigate the phase differences between preamble
chirps and add the preamble power constructively, achieving
a more noise-resistant packet detection.

Secondly, we use a two-stage detection to perform accu-
rate Carrier Frequency Offsets (CFO) and Timing Offset (TO)
detection. The first coarse-stage detection uses the traditional
up-down detection method [57]. After that, we remove the
CFO and TO from the symbol by multiplying the singletone
and shifting the samples. Then, we perform a fine-grained
search since the initial frequencies of the preamble, and start
frame delimiter (SFD) may not fall onto discrete FFT bins.
Using the CFO and TO results from the previous stage, each
symbol in the preamble, and SFD is now windowed correctly.
Each symbol’s power will be added constructively into one
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Figure 6: Hardware implementation.

frequency bin, centered closely to zero. Instead of using FFT,
we perform a heuristic search on a small interval around
that peak based on Brent’s method [5] to achieve the highest
accuracy while keeping the computational cost low. Thus,
we can compute CFO and TO at sub-integer levels to remove
them accurately.

Thirdly, after we perform accurate CFO and TO removal,
we observe that if the symbol’s frequency does not fall onto
discrete FFT frequency bins, the power of FFT bins may be
lower than the actual height of the power peak. The symbol
may also not start at discrete samples, leading to a small time
offset. The STO in the first step also accounts for the time
offsets. Since time offset translates to frequency shifts after
dechirp, we can mitigate the CFO, TO, and SFO by shifting
each symbol by the frequencies. Through these procedures,
we can detect extremely weak LoRa packets with high suc-
cess rates and accurately remove the CFO, STO, and TO to
extract high-quality LoRa symbols from the payload while
maintaining a small computational overhead. The algorithm
runs in parallel with demodulation, sharing the same GPU,
requiring 147 ms to process one second of signal at SF10. It
introduces only 12 ms detection delay after the end of the
preamble, significantly shorter than the payload duration,
allowing real-time packet detection.

4 Implementation

Hardware Implementation: We test the performance of
LoRaSeek with real-life hardware. As shown in Figure 6,
the transmitter is based on Semtech SX1276 [47], and the
receiver is a USRP N210 SDR [44] with SBX 400-4400 RF
daughterboards [43]. We use a ThinkPad E460 laptop and
UHD+GNU-radio software to control the receiver. We use
a sampling rate of 1 MS/s. Experiments are conducted at
470MHz central frequency, 3 bandwidths (e.g., 125 kHz, 250
kHz, 500 kHz), and 6 SFs (e.g., from 7 to 12). Each preamble
contains 8 upchirps. Overall, we collected approximately
60,000 packets at high SNR (>30 dB).

Chirp Signal Dataset: We conduct experiments in four dif-
ferent environments: indoor, campus, urban, and farm. The
collected data contains different levels of multipath, interfer-
ence, and channel fading effects. Additionally, to generate
signals with different SNR levels for evaluation, we add Addi-
tive White Gaussian Noise (AWGN) into the collected dataset
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Figure 7: Comparison of CFO and noise differences
across environments.

[12, 24], rendering over 40 million chirp symbols from -40
dB to 15 dB.

Environmental Characterization: The four data collec-
tion environments exhibit different channel conditions. The
indoor scenario, a furnished office, exhibits the strongest
multipath and the highest interference, while the campus
environment, a semi-urban setting with fewer buildings and
more greenery, and the urban environment, characterized
by dense high-rise buildings and busy streets, lie between
these two extremes. We quantify multipath and interference
intensity across the four environments.

Multipath effects are characterized using the CFO of received
packets. Multipath introduces additional transmission delays.
Because LoRa symbols are chirps with monotonically increas-
ing instantaneous frequency, delayed multipath components
exhibit lower frequency, thereby reducing the observed CFO.
Hence, stronger multipath propagation corresponds to lower
CFO. Using the same device across all environments to en-
sure a constant oscillator frequency, we measure CFO under
each setting. In Figure 7a, the results show that indoor sig-
nals yield the lowest CFO, indicating the strongest multipath,
followed by campus, while the farm exhibits the highest CFO,
namely the weakest multipath.

Interference levels are assessed by analyzing noise charac-
teristics. Interference produces frequency-selective power
fluctuations, which manifest as uneven spectral spikes and
increased variance in noise power. To quantify this effect, we
first remove the signal component from each received packet,
then compute the variance of the residual frequency-domain
noise power. As shown in Figure 7b, the indoor environment
exhibits the highest noise variance, attributable to coexisting
wireless transmitters. In contrast, the other three environ-
ments show substantially lower variance, consistent with
their relatively sparse wireless activity. These measurements
confirm significant diversity in both channel and interfer-
ence characteristics across the four environments, thereby
capturing a wide spectrum of real-world LoRa deployment
conditions.

Model Training and Testing: For each SF and BW, we
split the dataset into training and test subsets, reserving 80%
for training and the remaining 20% for testing. We use a
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batch size of 32 and a learning rate of 1 x 10™%. The Adam
optimizer is used with f; = 0.5 and f, = 0.999. Lower
SF, which contains fewer chirp symbols and smaller input
dimension, shows faster convergence rates than higher SF.
As we introduce the model to various extreme SNR levels
(e.g., —40 dB), this can serve as a form of adversarial training.
Dual Loss Function: We propose a dual Mean Squared
Error (MSE) reconstruction loss to optimize both spectro-
gram and time-domain representations. Let X denote the
denoised spectrogram, we collect the groundtruth high-SNR
spectrogram Xg;. Similiarly, we denote the reconstructed
time-domain chirp signal as x(n) and the corresponding
high SNR groundtruth xg,(n). The final loss function is:

Z = a-MSE(X, Xg) + - MSE(£(n), x¢1(n)),

where a and f represent weights to maintain balance be-
tween the spectrogram and time-domain losses.
Curriculum Learning: We utilize curriculum learning [4],
where we initially train LoRaSeek on high SNR level datasets
before gradually presenting more challenging low SNR con-
ditions. This systematic SNR decrease enhances LoRaSeek’s
robustness across varying noise levels while capturing es-
sential signal characteristics in clean, optimal conditions.
Model Compression: We further compress LoRaSeek to en-
hance efficiency and capability within resource-constrained
LoRa gateway environments. We add more convolution lay-
ers to further downsample the input dimension and imple-
ment structural pruning [16]. We preserve layers with the
largest L1-norms. We incorporated mixed-precision train-
ing with half-precision (FP16) floating-point arithmetic and
ONNX Runtime [9] to reduce model complexity, while fine-
tuning to maintain performance.

5 Evaluation

Baseline Methods: (1) LoRaPHY [57]: A non-neural method
which is believed to be used in the default physical layer
of commercial LoRa gateways. It applies dechirp and FFT
to each symbol and then adds the power of the two signal
power peaks. Their work provides two methods: “Abs+” and
“Ps+”, but since [11] pointed out that the two methods are
equivalent, we refer to them as LoRaPHY.

(2) NELoRa [24]: A neural-based method which first applies
a neural network to denoise the spectrogram of each symbol
and then uses another network to classify symbols.

(3) GLoRiPHY-Core [45]: A neural-enhanced method that
uses CNNs encoder-decoder with a transformer bottleneck
to denoise the noisy LoRa signals. After denoising, it uses
inverse STFT to reconstruct the signal from the denoised
spectrogram and uses standard LoRa demodulation.

(4) LoRaTrimmer [11]: The state-of-the-art LoRa weak sig-
nal decoding method based on a probabilistic model, which
is parallel with our neural-enhanced method. It replaces the
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curve under different BWs at SF=7. (h) shows SNR gains of different BWs at SF=7 over LoRaPHY.

FFT in dechirp with a probabilistic phase-jump searching to
optimally add the energy and remove out-band noise. Lo-
RaTrimmer assumes the distribution of the chirp phase-jump
is uniform. We compare LoRaSeek with LoRaTrimmer sepa-
rately in Section 5.5 and 5.6.

Evaluation Metrics: (1) Symbol Error Rate (SER): After
decoding each symbol, we calculate its SER by computing
its accuracy with ground truth. (2) SNR Gains: We calculate
SER at different SNRs. Thenwe set the SER threshold at 10%,
a reasonable threshold for stable communication. We find
the lowest SNR (in decibels) to achieve SER < 10%, using
interpolation when necessary.

5.1 Overall Performance

Setup: We evaluate LoRaSeek’s performance with different
LoRa configurations in the indoor environments, including
6 SFs (e.g., 7 to 12) and 3 BWs (e.g., 125K, 250K, 500K).

Results: Figure 8a-h shows the results. Given the BW is 125
kHz, Figure 8a-c shows the SER across different SNRs at small
SF (e.g., 7) and large SF (e.g., 10, 11) scenarios. We measure
the SNR gains of different demodulation techniques, shown
in Figure 8d. LoRaSeek outperforms all the baseline methods
with consistent SER improvements at all SNR levels. Specifi-
cally, in terms of SNR gains, our method achieves 2.04 to 3.86
dB gain over LoRaPHY, 1.32 to 1.83 dB gain over NELoRa,
and 0.86 to 3.03 dB gain over GLoRiPHY-Core. We observe a
clear performance that as the SF increases, NELoRa’s perfor-
mance declines, obtaining only approximately 0.7 dB gain
over LoRaPHY when the SF is 11 or 12. For GLoRiPHY-Core,
the decline is even more dramatic, with only 0.5 dB and 0.15
dB gain over LoRaPHY at SF set to 10 and 11 and no per-
formance enhancement at SF=12. At SF=12, the lowest SNR
required for GLoRiPHY-Core to achieve an SER of 10% is 0.83

dB lower than that of LoRaPHY, translating to a 3.03 dB be-
hind LoRaSeek. This performance degradation results from
the lack of robust network design to fully capture LoRa chirp
signal multi-scale dependencies and high-dimensional signal
characteristics at large SFs. In contrast, these results confirm
LoRaSeek’s efficiency in learning multi-dimensional signal
features and maintaining robustness under ultra-low SNR.
We further examine the performance of the BWs change
when SF=7. In Figure 8e-h, LoRaSeek demonstrates consis-
tent decoding improvements and the highest SNR gain over
LoRaPHY in all BWs configurations. The largest SNR gain
is BW=500 kHz, inducing 6.82 dB gain over LoRaPHY, 2.53
dB gain over NELoRa, and 1.18 dB gain over GLoRiPHY. For
LoRa node battery saving, NELoRa achieves an extra 1.39
years at a 2 dB gain for SF7 BW125 kHz. LoRaSeek achieves a
3.86 dB gain, suggesting comparable or greater enhancement.
At SF10, LoRaSeek can decode LoRa packets using lower SFs
in ultra-low SNRs, potentially exceeding NELoRa’s 272% bat-
tery life gain.

Remark: LoRaSeek maintain a consistent superior SNR gain
over baseline methods: 2.04 to 3.86 dB gain over LoRaPHY,
1.32 to 1.83 dB gain over NELoRa, and 0.86 to 3.03 dB gain
over GLoRiPHY-Core.

5.2 Robustness in Different Environments

Setup: We test LoRaSeek in indoor settings (e.g., offices) and
outdoor settings (e.g., urban areas, campuses, and farms) with
diverse noise patterns. Experiments were conducted with an
SF=7 and a BW=125 kHz with different LoRa transmitters and
gateways. We propose two evaluation scenarios: (1) directly
using pretrained models from the indoor dataset (Section 5.1)
to infer on a new dataset, and (2) fine-tuning all pretrained
models on the new dataset for adaptation.
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Table 1: Computational overhead of ML-based LoRa demodulation in terms of model parameters, storage overhead,
and inference time for demodulating a packet with 16 chirp symbols on GPU (Full/Compressed model).

‘ Parameters (M) ‘ Storage Overhead (MB) ‘ Inference Time (ms)

Method | SF7 SF8 SF9 SF10 SF11 SF12 | SF7 SF8§ SF9 SF10 SF11 SF12 | SF7 SF§ SF9 SF10 SF11 SF12
NELoRa 80/5.1 182/124 522/40.0 174.4/493 636.0/63.1 2427.3/78.8 71/5.9 10.6/85 18.2/148 34.6/20.7 70.7/244 149.9/314

GLoRiPHY-Core | 3.2/2.1 3.2/2.2 3.4/2.5 13.7/9.5 16.9/12.7 29.5/25.3 6.7/48 7.3/58 8.1/6.0 9.1/6.6 11.9/7.1 17.4/8.7
LoRaSeek 0.5/0.3  1.8/1.4 1.8/1.4 3.7/2.4 5.6/3.3 5.7/3.3 3.8/3.0 6.0/4.6  6.8/4.8 7.9/5.2 9.0/5.6 14.7/6.2

32.1/20.6 72.9/45.1 208.2/58.1 697.8/152.9 1051.2/241.1 3548.3/300.9
12.2/8.1 12.5/8.5 13.3/9.4 52.5/36.5 64.6/48.6 112.8/96.7
2.1/1.2 7.2/5.3 7.2/53 14.2/9.4 21.7/13.0 21.8/13.0
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on new environments without fine-tuning. (b) Perfor- Figure 10: Ablation study on the impact of different
mance after fine-tuning on environment-specific data. decoding methods and the skip connection.

Settings: In (Indoor), C (Campus), U (Urban), F (Farm).

Table 2: Time consumption to demodulate 16-chirp

symbols on Raspberry Pi (ms, Full/Compressed model). parameters. In stark contrast, NELoRa scales exponentially,

reaching up to 2.4 billion parameters at SF12, 425 times larger

Method | SF7 SF8 SF9 SF10 Skt Sk than LoRaSeek. Compared to GLoRiPHY-Core, LoRaSeek
NELoRa 13934/2023 24460/3579 46866/6694 130524/15455 NA/20977 NA/39452 . . . .
GLORiPHY-Core | 834/492  1050/790  1455/1085  3740/2652  4930/4507 9432/8463 has a significantly smaller footprint, approximately 1.7 to 6.4
LoRaSeek 577/390 911/728 1351/980 3212/2078 4125/3248 8637/6590 times SmaHEI‘, Whlle lnduclng Consistently hlgher demodula'
Results: Figure 9 displays LoRaSeek’s SNR gains over Lo- tion accuracy. Furthermore, the compressed version further
RaPHY across different environments and locations. Without reduces the parameter count by 22.2% to 42.1%, maintaining
prior training or fine-tuning, LoRaSeek delivers the highest efficiency without compromising performance.
SNR gains over LoRaPHY, outperforming all baseline meth- (2) Minimal Storage: LoRaSeek requires only 2.1 MB (SF7)
ods. As depicted in Figure 9a, when the pretrained model is to 21.8 MB (SF12) storage on the disk, with a slight increase
directly applied to new environments without fine-tuning as SF increases. Notably, LoRaSeek’s storage overhead at

on a target dataset, LoRaSeek obtains SNR gains ranging SF12 (21.8 MB) is 32% lower than that of NELoRa at SF7
from 1.67 to 3.15 dB over LoRaPHY, 1.38 to 2.11 dB over (32.1 MB). In the compressed variant, LoRaSeek reduces stor-
NELoRa, and 0.3 to 1 dB over GLoRiPHY-Core. As shown age requirement by 1.6-7.4x compared to GLoRiPHY-Core,

in Figure 9b, when fine-tuned on each dataset, LoRaSeek enabling deployment on resource-constrained devices.

further enhances performance, achieving SNR gains of 3 to (3) Low Inference Latency: LoRaSeek exhibits the fastest
3.86 dB over LoRaPHY, 1.5 to 1.88 dB over NELoRa, and 0.67 inference times, introducing 3.8 ms at SF7 and 14.7 ms at SF12.
to 1.17 dB over GLoRiPHY-Core. Overall, LoRaSeek consis- This is substantially lower than other methods: from SF=7
tently improves SNR gains and decoding accuracy in diverse to SF=12, NELoRa incurs 7.1 ms to 149.9 ms, and GLoRiPHY-
noise conditions, demonstrating its robustness in adapting Core requires 6.7 ms to 17.4 ms. The compressed version of
to different hardware configurations and environments. LoRaSeek obtains from 21-57.9% speedup, up to 1.6x faster

than GLoRiPHY-Core and 5x faster than NELoRa, making
LoRaSeek an ideal solution for near real-time LoRa demodu-
lation. Furthermore, though our method can run effectively
on PC-based platforms, we further evaluate the performance
on a resource-constrained device, the Raspberry Pi. As de-

5.3 Computational Overhead

Setup: We evaluate the computational cost of LoRaSeek and
other ML-based demodulation models based on model size,
storage overhead, and inference time for demodulating a
16-chirps packet. Inference time is averaged over 100 times picted in Table 2, our method incurs approximately 577 ms
on a PC with one NVIDIA RTX 3090 GPU. We also test on at SF7, which reduces to 390 ms after compression, achieving
Raspberry Pi to emulate the limited computing power of a 32% speedup. This highlight LoRaSeek’s optimal balance
commercial gateways in resource-constrained conditions. between decoding performance and computational require-
Results: As shown in Table 1, LoRaSeek maintains a light- ments for practical applications. Given its low computational
weight yet effective design for LoRa demodulation: footprint and minimal time consumption, LoRaSeek facili-

(1) Model Efficiency: LoRaSeek maintains minimal param- tates real-world deployments across diverse hardware and
eter count from 0.5 million (e.g., SF7) to 5.7 million (e.g., SF12) computational resource configurations.
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5.4 Ablation Study

Different Decoding Methods: We evaluate LoRaSeek’s per-
formance with all possible LoRa demodulation methods: Lo-
RaPHY [57] (LoRaSeek by default), LoRaTrimmer [11] (Trim-
mer), and NELoRa’s neural decoder (DNN) [24]. Figure 10a
illustrates the SER of LoRaSeek with different decoding tech-
niques. LoRaSeek obtains the highest SNR gains when in-
corporated with the standard demodulation approach: 3.86
dB gains at SF7 and 2.80 dB gains at SF10 over LoRaPHY. In
contrast, NELoRa’s neural decoder achieves the lowest SNR
gains: 3.14 dB gains at SF7 and 1.74 dB gains at SF10 over
LoRaPHY. This reduction in performance could be due to the
expensive computational overhead of the neural decoder and
its limited ability to capture the chirp signal’s features in infi-
nite noise patterns. It is noteworthy that across all decoding
methods, LoRaSeek outperforms other baseline methods.
Dual Attention Skip Connection Performance: Figure 10b
shows the SNR gains of LoRaSeek over LoRaPHY with and
without the dual attention skip connection. The dual atten-
tion skip connections result in SNR gains of 2.8 dB at SF10
and 3.86 dB at SF7 over LoRaPHY while removing them re-
duces SNR gains to 1.68 dB at SF10 and 2.75 dB at SF7. These
results confirm the effectiveness of the skip connection in
preserving distinct characteristics and mitigating informa-
tion loss in chirp signals. Moreover, the dual attention skip
connection incurs only a slight increase in the model com-
plexity, achieving a 1.12 dB SNR gain at the cost of a mere
0.04-0.08 million parameter increase. Even without dual at-
tention skip connection, LoRaSeek still outperforms other
baseline methods, with SNR gains of 0.72 dB over NELoRa
(e.g., SF7) and 0.62 dB over GLoRiPHY-Core (e.g., SF10).
Local and Global Feature Extraction: We conduct three
ablation studies as follows: (1) removing local feature extrac-
tion blocks, (2) removing global feature extraction blocks,
and (3) replacing global blocks with local ones and removing
skip connections, making a conventional U-Net variant. Fig-
ure 11a shows that local and global blocks contribute 1.05 and
2 dB SNR gains, respectively. The U-Net model suffers the
most serious performance degradation, even worse than the
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(a) campus-scale deployment (b) farm-scale deployment

Figure 12: Deployment of coverage experiments.
baseline LoRaPHY. These results confirm the effectiveness
of our hybrid design in capturing the unique characteristics
of LoRa chirps for robust denoising.

5.5 Comparison with LoRaTrimmer

In LoRa demodulation, a frequency jump occurring within
a symbol duration splits the symbol’s energy into two seg-
ments, and the Sampling Time Offset (STO) causes a phase
jump between these segments. At large STOs, the phase jump
follows a uniform distribution; At small STOs, its distribution
concentrates around zero.

LoRaTrimmer [11] is designed based on the assumption
of a uniform phase jump distribution, but it may not be
the case with smaller oscillator drifts and shorter packet
lengths. To systematically evaluate the performance of Lo-
RaSeek compared to LoRaTrimmer across different phase
jump distributions, we conduct two experiments : (1) Uni-
form Phase Distribution: Signal phases are independently
and uniformly sampled from the range [—x, 7]. (2) Non-
Uniform Phase Distribution: Signal phases exhibit a bias
towards values close to zero, drawn from a normal distribu-
tion centered at zero with a standard deviation of 0.1.
Results: Figure 11b illustrates the results. Under non-uniform
scenarios, LoRaSeek and LoRaTrimmer achieve comparable
performance with an average SNR gain of 2.91 dB over Lo-
RaPHY. On the other hand, under uniform phase conditions,
LoRaSeek has an average SNR gain of 3.21 dB over LoRaPHY,
while LoRaTrimmer achieves 2.91 dB. In fact, phase jump dis-
tributions are complex in real-world deployments depending
on hardware and communication settings, and they can be
further canceled by accurate CFO and STO calibration. Lo-
RaTrimmer assumes that noise is evenly distributed AWGN
and phase follows an even distribution over [—7, 7], both
may deviate from the real-life distributions. LoRaSeek can
learn the intricate patterns of real-life phase distributions
and adapt to different settings, achieving a higher SNR gain.

5.6 Real-world Coverage

Setup: To evaluate the real-world coverage of LoRaSeek, we
conducted experiments in two environments: a 1.39 x 1.47-
mile urban campus and a 1.36 x 1.69-mile rural farm, covering
various landcover types (e.g., trees, buildings, roads, hills, and
crops). We set SF at 10 and BW at 125 kHz. LoRa nodes were
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Figure 14: Robustness to (a) Unlicensed Interference
and (b) Channel Fading in various environments.

deployed at six campus locations and eight farm locations,
with each location transmitting 61 packets, each containing
36 chirp symbols. The deployment of the experiments is
illustrated in Figure 12.

Results: All the packets transmitted across the 14 locations
were successfully detected, validating the effectiveness of our
packet detection method. Figure 13a presents the SER of five
methods at 6 locations in an urban campus. Overall, as the
distance between the gateway and the LoRa node increases,
the SER tends to rise. However, despite its proximity to the
gateway, location 5 experiences a high SER due to build-
ing obstructions. Compared with the baseline, the LoRaSeek
decreases SER by 54.7% to 11.3%. Moreover, despite severe
signal attenuation at location 6, LoRaTrimmer reduces the
SER by 9.7% to 76.8%, while our proposed method, LoRaSeek,
achieves an even greater reduction of 20.5%, lowering the
SER to 56.3%. On campus, LoRaSeek lowers the SER by an av-
erage of 8.3%, and by up to 20.5% compared to LoRaTrimmer.
Figure 13b shows the SER of eight locations in a farm. We can
still observe that LoRaSeek outperforms other baseline meth-
ods. At location 1, which has the shortest distance, LoRaSeek
achieves an SER of 59.1%, whereas LoRaTrimmer achieves
70.9%. At location 7, the farthest distance, LoRaSeek achieves
an SER of 82.6%, while LoRaTrimmer achieves 90.8%. In the
farm, LoRaSeek lowers the SER by an average of 10.2%, and
by up to 14.11% compared to LoRaTrimmer.

Remark: This highlights LoRaSeek’s advantage over pre-
vious methods in real scenarios, as it effectively captures
multi-dimensional features under strong noise.
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5.7 Robustness to Unlicensed Band
Interference

The interference from other unlicensed band devices can be
categorized into interference from other wireless protocols
operating in the same band, and interference from other LoRa
transmitters. For the former, we evaluate LoRaSeek with co-
existence interference from Zigbee in the 902-928 MHz band
[20]. We insert Zigbee BPSK modulated interference into
high-SNR LoRa signals. We control Signal-to-Interference
Ratio (SIR) by scaling Zigbee interference power to LoRa
with SIR values from -20 dB to +20 dB. We also add AWGN
at varying SNRs to simulate realistic channels. As shown in
Figure 14a, LoRaSeek consistently outperforms LoRaPHY,
NELoRa, and GLoRiPHY-Core with up to 9.49, 5.29, and 1.3
dB SNR gains. For LoRa interference, chirp signals may have
the same or different SFs. In the first case, LoRaSeek utilizes
the quasi-orthogonality of chirp time and frequency domains
for effective decoding via chirp distinct multi-dimensional
features. When multiple LoRa signals have the same SF, it is
a collision decoding problem [25], which is not within our re-
search scope. LoRaSeek is designed to effectively reconstruct
and decode weak signals, so it is not optimized to resolve
collisions, especially when interference is stronger than the
signal and has high similarity in feature space. We acknowl-
edge that ML-based LoRa collision decoding remains an
open problem, requiring a novel architecture to maximize
feature differences among multiple the same SF chirp signals.

5.8 Robustness to Fading and Multipath
Channel

We evaluate LoRaSeek on a dataset with simulated Rayleigh
fading and multipath effects. From high-SNR signal data, we
use MATLAB’s Communication Toolbox [35] to configure
channel parameters: number of paths, average path gains,
and Doppler shifts. AWGN is added at varying SNR levels
to further assess robustness. As shown in Figure 14b, in dif-
ferent settings of office, campus, urban, and farm, LoRaSeek
consistently outperforms LoRaPHY, NELoRa, and GLoRiPHY
with up to 3.51, 2.11, and 1.0 dB SNR gains.

6 Related Work

MIMO-based Decoding: Recent studies have demonstrated
that using multiple gateways or LoRa nodes can significantly
enhance the SNR [2, 10, 14, 18]. For instance, Charm[10] coor-
dinates multiple gateways to identify weak signals by detect-
ing a combined energy peak. OPR [2] achieves better bit error
recovery performance as the number of gateways increases.
Choir [14] leverages signal correlation among nearby LoRa
nodesChime [17] selects frequencies strategically across mul-
tiple gateways to mitigate multipath effects. MALoRa [18]
and PCube [56] synchronize gateways using a shared clock,
but this restricts the distance between gateways, resulting
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in limited overall coverage. In contrast, LoRaSeek leverages
state-of-the-art deep learning architecture to achieve addi-
tional SNR gain, seamlessly integrating with existing MIMO
systems for improved decoding.

Single gateway Decoding: LoRaPHY[57] introduces a phase
alignment strategy to enhance signal power. Chime[17] ex-
amines multiple wireless channel characteristics to iden-
tify optimal frequencies. Nephalai[28] uses a compressive-
sensing cloud radio access network to enable efficient multi-
channel LPWAN decoding. Falcon [49] employs selective in-
terference with competing LoRa transmissions. Ostinato [58]
enhances SNR by restructuring original packets into pseudo
packets composed of repeated symbols. FerryLink [59] presents
a two-hop forwarding approach to enhance unreliable LoRa
connections. Demeter [41, 42] optimizes signal reception
through polarization alignment. XCopy [55] achieves im-
proved SNR by coherently integrating signals from retrans-
mitted packets. LoRaTrimmer [11] optimizes decoding by
trimming out noise components and merging power effec-
tively. In contrast, LoRaSeek employs an ML-based hierar-
chical structure to denoise signals from multiscale features,
improving the standard decoding technique’s accuracy.
Deep Learning based wireless networks: Recent stud-
ies 3, 33, 34, 51] use neural networks to infer downlink from
uplink channels. Amani et al. [1] explored radio frequency
fingerprinting for authenticating LoRa. The DeepLoRa frame-
work [29] leverages an LSTM network to accurately predict
path loss in LoRa links. DeepSense [8] utilizes CNN and RNN
architectures to facilitate random access and coexistence in
LoRaWAN systems, effectively operating below the noise
floor by converting complex signals into power spectrogram
representations. NELoRa [12, 24] combines CNN and LSTM
to decode LoRa signals received at a single gateway, par-
ticularly addressing low-SNR scenarios. SRLoRa [13] builds
upon NeLoRa, enhancing the decoding performance when
utilizing multiple LoRa gateways. ChirpTransformer [26, 38]
modifies the encoder on the LoRa node and uses a DNN
decoder to enhance the ultra-low SNR scenarios.

7 Discussion

Low-Power IoT Feasibility: A LoRa network consists of
LoRa nodes, gateways, and cloud servers. While LoRa nodes
operate under strict battery constraints, gateways are typi-
cally powered by cables or solar panels, providing more sta-
ble power and stronger computational capabilities. Gateways
receive and decode packets from LoRa nodes and forward
them to the cloud. LoRaSeek is deployed on LoRa gateways,
allowing LoRa nodes to operate with standard LoRa proto-
cols without compromising their original functionality. To
further improve gateway energy efficiency, when backhaul
bandwidth is sufficient, LoRa Cloud Radio Access Networks
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(CRAN) [48] can be used to offload packet decoding to the
cloud. In this case, LoRaSeek is deployed on the cloud server,
and raw LoRa signals captured by the gateways are trans-
mitted to the cloud via CRAN.

End-to-End Computation Optimization: In addition to
model compression used in LoRaSeek, we can selectively
trigger full-layer LoRaSeek only for weak signals below a pre-
defined SNR threshold. This SNR-aware triggering, trained
through data-intensive methods, enables LoRaSeek to op-
erate in a lightweight mode under high-SNR conditions.
Beyond software optimization, computation can be accel-
erated through hardware—software co-design, leveraging
low-power edge Al chips (e.g., Google Edge TPU [21]) to en-
hance LoRa gateway processing capabilities. The additional
overhead for robust packet detection and offset estimation
is approximately 12 ms per packet on a GPU server—com-
parable to chirp symbol decoding. With hardware-software
co-design, this process can be further optimized by executing
packet detection on FPGAs and decoding on edge Al chips,
enabling pipelined processing to increase overall throughput.
However, achieving optimal latency-throughput trade-offs
through pipelined packet detection and decoding remains
an open challenge.

Model Training and Enhancement: In a static environ-
ment, channel noise consists of both stable and dynamic com-
ponents. Before deploying LoRaSeek in a given environment,
noise-type-specific regularization can enhance denoising by
learning noise-invariant features from preambles [45].

8 Conclusion

In this paper, we introduce LoRaSeek, a lightweight and reli-
able LoRa denoising framework that enhances chirp signal
quality and decoding robustness. At its core, LoRaSeek fea-
tures a hierarchical denoising architecture combining multi-
stage CNN and Transformer blocks to extract local and global
features, effectively mitigating multiscale distortions while
maintaining linear scaling complexity. Additionally, a selec-
tive denoising mechanism with dual attention-based skip
connections filters and integrates multistage information
across both channel and spatial dimensions, ensuring high-
quality signal reconstruction. We implement LoRaSeek with
COTS LoRa end node and USRP N210. The evaluation results
under various configurations and environments demonstrate
that it surpasses state-of-the-art methods in both robustness
and computational efficiency.
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